Schrödinger ’ s CRCs ( Fast

نویسنده

  • Lee Pike
چکیده

I revisit the fault-tolerance of cyclic redundancy checks (CRCs), expanding on the work of Driscoll et al [1]. I introduce the concepts of Schrödinger-Hamming weight and Schrödinger-Hamming distance, and I argue that under a fault model in which stuck-at-one-half or slightly-out-of-spec faults dominate, current methods for computing the fault detection of CRCs may be over-optimistic. Keywords-cyclic redundancy check (CRC), slightly-out-ofspec, fault-tolerance, reliability

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast CRCs (Extended Version)

CRCs have desirable properties for effective error detection. But their software implementation, which relies on many steps of the polynomial division, is typically slower than other codes such as weaker checksums. A relevant question is whether there are some particular CRCs that have fast implementation. In this paper, we introduce such fast CRCs as well as an effective technique to implement...

متن کامل

Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...

متن کامل

The Schrödinger distance transform (SDT) for point-sets and curves

Despite the ubiquitous use of distance transforms in the shape analysis literature and the popularity of fast marching and fast sweeping methods—essentially HamiltonJacobi solvers, there is very little recent work leveraging the Hamilton-Jacobi to Schrödinger connection for representational and computational purposes. In this work, we exploit the linearity of the Schrödinger equation to (i) des...

متن کامل

On a class of nonlinear fractional Schrödinger-Poisson systems

In this paper, we are concerned with the following fractional Schrödinger-Poisson system:    (−∆s)u + V (x)u + φu = m(x)|u|q−2|u|+ f(x,u), x ∈ Ω, (−∆t)φ = u2, x ∈ Ω, u = φ = 0, x ∈ ∂Ω, where s,t ∈ (0,1], 2t + 4s > 3, 1 < q < 2 and Ω is a bounded smooth domain of R3, and f(x,u) is linearly bounded in u at infinity. Under some assumptions on m, V and f we obtain the existence of non-trivial so...

متن کامل

A Schrödinger Equation for the Fast Computation of Approximate Euclidean Distance Functions

Computational techniques adapted from classical mechanics and used in image analysis run the gamut from Lagrangian action principles to HamiltonJacobi field equations: witness the popularity of the fast marching and fast sweeping methods which are essentially fast Hamilton-Jacobi solvers. In sharp contrast, there are very few applications of quantum mechanics inspired computational methods. Giv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010